Year at a Glance Scope and Sequence for Math

Overarching Goal of the Curricular Area: Students will be able to use mathematical skills by problem solving, critiquing, analyzing, and reasoning the world around them for a variety of lifelong situations.

Unit	Unit Cool	Enduring Understandings	Essential Questions
Theme	Unit Goal	for the Unit	for the Unit
Counting and Cardinality	Students will know number names and count sequence.	Students will understand that counting represents how different numbers relate to one another.	How can I, when counting a set of objects, pair each object with one and only one number name?
	Students will be able to count to tell the number of objects.		How can I write a numeral to represent a number of objects from 0-20?
	Students will be able to compare numbers.		How can I tell which of two numbers (less than 10) is larger?
Operations and Algebraic Thinking	Students will understand addition as putting together	Students will understand when to join numbers together (addition) and when to take numbers apart (subtraction).	How can I use a variety of strategies to represent addition and subtraction?
	and adding to, and understand subtraction as taking		How can I use objects or drawings to solve addition and subtraction problems?
	from.		How can I find different combinations of numbers that make 10?
Number and Operations in Base Ten	Students will be able to work with numbers 11-19 to gain foundations for place value.	Students will understand that teen numbers (11-19) are composed of a group of ten ones and additional ones.	How can I show the composition or decomposition of numbers 11-19 using objects or drawings?
Measurement and Data	Students will be able to describe and compare measurable	Students will understand that objects can be compared using different attributes (length/height and weight)	How can I sort objects by their common attributes?
	attributes. Students will be able to classify objects	Students will understand that objects can be sorted into different categories and then counted within the categories.	How can I use different objects to measure and compare length and height?
	and count the number of objects in each category.		How can I use a pan-balance to measure and compare weights?
Geometry	Students will be able to identify and describe shapes (squares, circles, triangles, rectangles	Students will understand the relative positions of objects in their environment (above, below, beside, behind, in front of, next to).	How can I describe shapes using their name (square, triangle, etc.) or other words such as sides, corners, and other attributes?
	hexagons, cubes, cones, cylinders and spheres).	classified as either two-dimensional or three- dimensional.	How can I describe the difference between two-dimensional and three- dimensional shapes?
	Students will be able to analyze, compare, create, and compose shapes.	and model shapes according to their specific attributes.	How can I create new shapes by combining simple shapes?

Kindergarten

Year at a Glance Scope and Sequence for Math

Overarching Goal of the Curricular Area: Students will be able to use mathematical skills by problem solving, critiquing, analyzing, and reasoning the world around them for a variety of lifelong situations.

Unit		Enduring Understandings	Essential Questions
Theme	Unit Goal	for the Unit	for the Unit
Counting	Students will be able to relate counting to addition and subtraction. Students will be able to add and subtract within 20 demonstrating fluency. Students will be able to compare two-digit numbers based on the meanings of the taxes and once digit	Students will understand that counting represents how different numbers relate to one another.	How can I find a new number by counting up and back a number of spaces from a given number? How can I use addition and subtraction to solve simple number stories within 10? How can I tell which of two numbers (less than 15) is larger?
Addition	Students will be able to use addition and subtraction within 20 to solve a variety of word problems. Students will be able to relate counting to addition and subtraction. Students will be able to read, write, represent, and count to 120 starting at any number less than 120.	Students will understand that addition equations are part of the foundation of solving problems and more complex computations.	How can I solve and interpret number models for change to more and change to less stories within 10? How can I find and use an effective counting strategy to find the sum of two numbers? How can I count and represent a number of objects with a written numeral within 20?
Number Stories	Students will be able to use addition and subtraction to model and solve number stories. Students will be able	Students will understand that number stories are real life problems can be solved using math. Students will understand that they can problem solve by using models to work through their thinking.	How can I solve parts and total number stories within 10? How can use a number line or number grid to solve addition and subtraction problems?
	to connect counting to addition and subtraction.		How can I find the unknown number between two numbers?

Length and Addition	Students will be able	Students will understand that length can be	How can I find the length of an object
Facts	to measure lengths using nonstandard	estimated and measured.	using nonstandard units?
	units.	Students will understand that addition equations are part of the foundation of solving	How can I order different objects by length?
	Students will be able to use addition and subtraction within 20 to solve a variety of word problems.	problems and more complex computations.	How can I solve and write number models for number stories within 10?
		· · · · · · · · · · · · · · · · · · ·	
Place Value and Comparison	Students will be able to use place value to compare and add two-digit numbers.	Students will understand that place value can help them solve addition and subtraction problems.	How can I identify the two-digit number represented by base-10 blocks?
	Students will be able to understand that the two digits of a two-digit number represent amounts of tens and ones?	Students will understand that comparison can be used to distinguish the similarities and differences between numbers and objects.	How can I effectively compare numbers to determine which are greater than, less than, or equal to? How can I add a two-digit and a one- digit using tools?
	Students will be able to compare two two- digit numbers based on meanings of the tens and ones digit.		
Addition Fact	Students will be able	Students will understand that addition	How can I apply the commutative and
Strategies	operations as	problems and more complex computations.	solve problems?
	strategies to add and subtract. Students will be able to add and subtract		How can I use doubles facts and combinations of 10 to solve addition and subtraction facts within 20?
	within 20 with fluency using a		How can I find equivalent names for numbers?
	variety of strategies.		How can I tell the value of each digit in
	Students will be able to use the two digits		a two-digit number?
	of a two-digit number to represent amounts of tens and ones.		
Subtraction Fact Strategies and Attributes of Shapes	Students will be able to apply properties of operations as strategies to add and subtract.	Students will understand that addition and subtraction equations are part of the foundation of solving problems and more complex computations. Students will understand that the attributes of	How can I use addition to find the difference between two numbers? How can I find an unknown by relating two numbers and describing their relationship with a number sentence?
	Students will be able to use subtraction to solve for an unknown-addend problem.	shapes provides a foundation for recognizing, analyzing and drawing more complex shapes.	How can I use a variety of strategies to solve subtraction facts? How can I distinguish the defining and nondefining attributes of shapes?
	Students will be able to explore the defining and nondefining attributes of 2- dimensional shapes.		

Geometry	Students will be able	Students will understand that geometry	How can I determine the defining
	to explore the	involves measurement and data analysis as the	attributes of two and three
	defining and non-	basis of understanding geometric shapes,	dimensional shapes?
	defining attributes of	composition and problem solving.	
	2-dimensional		How can I make composite shapes from
	shapes.		two-dimensional shapes?
	Students will be able		How can I partition shapes into two or
	to compose and		four equal shares and name the
	decompose		shares?
	composite shapes.		
			How can I explain finding 10 more or 10
	Students will be able		less than a two-digit number?
	to mentally find 10		
	more or 10 less than		How can I use an analog or digital clock
	a two-digit number.		to tell time to the half hour?
	Students will be able		
	to tell and write time		
	in hours and half-		
	hours using analog		
	and digital clocks.		
Two-digit Addition	Students will be able	Students will understand that addition and	How can I identify the number of tens
and Subtraction	to add and subtract	subtraction equations are part of the	and ones in a two-digit number?
	using two-digit and	foundation of solving problems and more	
	one-digit numbers	complex computations.	How can I find the value of a digit in a
	within 100.		given number?
	Students will be able		How can I explain and model my
	to understand that		strategies for subtracting multiples of
	the two-digits of a		10?
	two-digit number		
	represent amounts of		How can I explain and model my
	tens and ones.		strategies for adding within 100?
	Churdon to a 10 bit a bit		
	Students will be able		
	to subtract multiples		
	of 10 in the range of		
	10-90.		

Year at a Glance Scope and Sequence for Math

Overarching Goal of the Curricular Area: Students will be able to use mathematical skills by problem solving, critiquing, analyzing, and reasoning the world around them for a variety of lifelong situations.

Unit Theme	Unit Goals	Enduring Understandings for the Unit	Essential Questions for the Unit
Tools and Counting	Students will be able to relate counting to addition and subtraction. Students will be able to use math tools to help them solve mathematical concepts.	Students will understand that there are a variety of tools they can use to count with. Students will understand that counting represents how different numbers relate to one another.	What are different ways to count? What are efficient ways to count?
Fact Strategies	Students will be able to internalize strategies to solve 1- digit by 1-digit additions problems.	Students will understand that real life problems can be solved using math. Students will understand that there is more than one way to solve a problem.	What strategies can I use to solve doubles facts and combinations-of-10 addition facts? How can I write an addition number story that matches a picture?
More Fact Strategies	Students will be able to internalize strategies for solving subtraction facts. Students will be able to develop fluency with addition and subtraction within 20.	Students will understand that there is more than one way to solve a problem. Students will understand that fact fluency is essential for solving more complex equations.	What strategies can I use to add and subtract within 20 to solve 1-step word problems? How can I use math tools to add or subtract within 100?
Place Value and Measurement	Students will be able to extend their understanding of place value by developing strategies for fluently adding and subtracting multi-digit numbers. Students will be able to use standard tools and units for	Students will understand that their knowledge of place value can help them solve addition and subtraction problems. Students will understand that measurement can be done with different tools and different units.	 How can I use place value to help me determine the value of a digit? How can I use place value to add and subtract 2 digit numbers? What tools should I use to measure in inches and centimeters? How can I use digital and analog clocks to tell time to the nearest half hour?

	measuring length and time.		
Addition and Subtraction	Students will be able to apply strategies for mentally adding and subtracting 10s and 100s.	Students will understand that addition and subtraction equations are part of the foundation of solving problems and more complex computations.	How can I mentally add or subtract 10 or 100 to any 2- or 3-digit number?
Whole Number Operations and Number Stories	Students will be able to collect and display data on different types of graphs. Students will be able record their own invented strategies for addition. Students will be able to solve number stories using multiple strategy models.	Students will understand that they can problem solve by using models to work through their thinking. Students will understand that graphing is another way to understand data.	How can I draw a picture graph using a tally chart? What strategies can I use to add 2 digit and 3 digit numbers? What models can I use to solve addition and subtraction problems?
Whole Number Operations, Measurement, and Data	Students will be able to explore addition and subtraction strategies and use them to add three or more numbers. Students will be able to use units of yards and meters to measure distances.	Students will understand that addition and subtraction equations are part of the foundation of solving problems and more complex computations. Students will understand that measurement can be done with different tools and different units.	What strategies can I use to add and subtract 2 or 3 digit numbers? How can you select appropriate measuring tools and measure the length of an object or distance to the nearest inch, foot, or centimeter?
Geometry and Arrays	Students will be able to explore 2- and 3- dimensional shapes and their attributes. Students will be able to partition rectangles into rows and columns of same-size squares. Students will be able to explore strategies for determining the total number of objects in equal groups and rectangular arrays.	Students will understand that the attributes of shapes provide a foundation for recognizing, analyzing and drawing more complex shapes. Students will understand that addition facts can help solve multiplication problems. Students will understand that arrays are in groups/rows and can be added together to get a sum.	What attributes can I use to identify shapes? What is a real life situation that you would need to use partitioning? When would you use an array or equal groups to solve a problem in life?

Equal Shares and Whole Number Operations	Students will be able to partition shapes into equal shares and	Students will understand that whole objects can be partitioned into smaller, equal parts.	How can I choose a tool to use to partition different shapes?
	apply these ideas to further explore length measurement.	Students will understand that their knowledge of place value can help them solve addition and subtraction problems.	How can place value properties help you solve a subtraction problem?
	Students will be able to use subtraction strategies based on place value.		

Year at a Glance Scope and Sequence for Math

Overarching Goal of the Curricular Area: Students will be able to use mathematical skills by problem solving, critiquing, analyzing, and reasoning the world around them for a variety of lifelong situations.

Unit	Lipit Goal	Enduring Understandings	Essential Questions
Theme	Unit Goal	for the Unit	for the Unit
Organization: Tools, Time, and Multiplication	Students will be able to use a variety of math tools to solve addition, subtraction, and multiplication problems. Students will be able to calculate elapsed time.	Students will understand that there are a variety of tools they can use to solve math problems. Students will understand that elapsed time is a skill needed for time management.	What tools can you use to help solve math problems? How do you determine what tool do you think would be best? What do you think the most efficient way to figure out elapsed time is? Why is time important? How can you represent multiplication?
Number Stories	Students will be able to solve one-step and two-step number stories involving addition, subtraction, multiplication, and division. Students will be able to represent their thinking by using various representation models.	Students will understand that real life problems can be solved using math. Students will understand that they can problem solve by using models to work through their thinking.	How do you determine what strategy you will use to solve a number story? How can you represent your mathematical thinking?
Operations: Multiplication and Place Value	Students will be able to use place value to solve addition and subtraction problems. Students will be able to represent multiplication to solve multiplication problems.	Students will understand that their knowledge of place value can help them solve addition and subtraction problems. Students will understand that multiplication is a more efficient way to do repetitive addition.	Why is place value important in completing addition and subtraction problems? How is multiplication represented in our classroom? In the world?
Measurement and Geometry	Students will be able to measure using a ruler. Students will be able to determine area and perimeter of a rectangle	Students will understand that measurement can be done using different tools and are represented by different units. Students will understand that precision is essential when measuring.	How can you make sure you are being precise when using a ruler? What are some real life examples of needing to find area and perimeter?

Fractions and	Students will be able	Students will understand that fractions	What strategies can you use to
Multiplication	to represent	represent a part of a whole.	compare fractions?
Strategies	fractions.		·
		Students will understand that multiplication is a	How can you represent multiplication?
	Students will be able	more efficient way to do repetitive addition.	
	to represent		
	multiplication to		
	solve multiplication		
	problems.		
More Operations	Students will be able	Students will understand that there is often	How can you compare strategies to see
	to solve multistep	more than one way to solve a problem.	which is more efficient and
	number stories.		appropriate?
		Students will understand that real life problems	
	Students will be able	can be solved using math.	How can you increase your fact
	to represent their		automaticity? Why is this important?
	solution in more than		
	one way.		
Fractions	Students will be able	Students will understand that fractions	If you needed to measure volume at
	to represent	represent a part of a whole.	home, how would you measure it?
	fractions in a variety		
	of ways.	Students will understand that measurement	When can fractions help you solve a
		can be done using different tools and are	problem in real life?
	Students will be able	represented by different units.	
	to measure liquid		
	volumes.		
Multiplication and	Students will be able	Students will understand that precision is	How does what we measure influence
Division	to precisely measure	essential when measuring.	how we measure?
	by using units down		
	to ¼.	Students will understand that factors are	Why is it important to know the factors
		directly related to the product.	of numbers?
	Students will be able		
	to recognize and	Students will understand the value of money.	Why is it important to learn about
	identify factors.		sharing money?
	Chudanta will be able		
	students will be able		
	Equally.	Students will understand that multi-digit	How can unknown multiplication facto
Multi digit	to colvo multi dicit	multiplication can be broken down into smaller	how call unknown multiplication facts
Operations	multiplication	more manageable stens	facts?
Operations	nrohlems	ווטוב וומוומצכמטוב גובאג.	iacis:
	problems.		

Year at a Glance Scope and Sequence for Math

Overarching Goal of the Curricular Area: Students will be able to use mathematical skills by problem solving, critiquing, analyzing, and reasoning the world around them for a variety of lifelong situations.

Unit	Linit Cool	Enduring Understandings	Essential Questions
Theme	Unit Goal	for the Unit	for the Unit
Place Value and Multi-digit Addition and Subtraction	Students will be able to independently identify place value	Students will understand that accurately adding and subtracting numbers relies on understanding place value.	How does the position of a digit in a number affect its value?
	concepts for multi- digit whole numbers.		How can place value properties aid computation?
	Students will be able to add and subtract multi-digit whole		What are different models of and models for addition and subtraction?
	numbers.		What are efficient methods for finding sums and differences for multi-digit numbers?
Basic Multiplication and Geometry	Students will be able to use various	Students will understand that multiplication is a more efficient way to do repeated addition.	What are different models of/for multiplication?
	multiplication.	Students will understand that formulas provide an efficient way to find area.	What are efficient methods for finding products?
	Students will be able to classify shapes by properties.		
	Students will be able to develop formulas for finding the area of a rectangle		
Fractions and Decimals	Students will be able to compare and	Students will understand that fractions represent parts of a whole.	How can fractions be modeled, compared, and ordered?
	same-size whole numbers.	Students will understand that decimals represent parts of a whole.	How are common fractions, decimals, and percents alike and different?
	Students will be able to compare and represent decimals.		
Multi-digit Multiplication	Students will be able to apply basic multiplication	Students will understand that multi-digit multiplication can be broken down into smaller, more manageable steps	What are efficient methods for finding products?
	principles to complete multi-digit multiplication problems.	Students will understand that formulas provide an efficient way to find area.	How can unknown multiplication facts be found by breaking them apart into known facts?
	Students will be able to use multiplication to find area of rectangles.		

		-	
Fraction and Mixed-	Students will be able	Students will understand that adding and	How can the same fractional amount
Number	to add and subtract	subtracting fractions require a common	be named using symbols in different
Computation and	fractions and mixed	denominator.	ways?
Measurement	numbers.		
		Students will understand that measuring angles	How can fractions be compared and
	Students will be able	requires a standard tool.	ordered?
	to recognize that the		
	degree is the		
	standard unit of		
	measure for angles.		
Division and Angles	Students will be able	Students will understand that multiplication	What are different models of/for
_	to explore the	and division are related facts.	models for division?
	relationship between		
	multiplication and	Students will understand that measuring and	When would you use division when you
	division.	constructing angles requires a standard tool.	are among friends?
	Students will be able		What are efficient methods for finding
	to use tools to		quotients?
	measure and		
	construct angles.		How can unknown division facts be
			found by thinking about a related
			multiplication fact?
Multiplication of	Students will be able	Students will understand that when a fraction is	What is the purpose of standard units
Fractions by a	to multiply a fraction	multiplied by a whole number, the product is	of measurement?
Whole Number and	by a whole number.	less than the initial whole number factor.	
Measurement	.,		How do units within a system relate to
medourement	Students will be able	Students will understand that measurement	each other?
	to convert units of	can be done with different tools and different	
	measure		What are the customary and metric
	measure.	units.	units for measuring length canacity
			and weight/mass and how are they
			rolated2
			Telated:
Fraction Operations	Students will be able	Students will understand that math can be	What is a real life scenario where you
and Applications	to apply knowledge	applied to every area of life	would use fractions, number concents
	of fractions number	applied to every area of me.	nottorns or geometry?
	concents natterns		patterns of geometry:
	and goomotry to		What can bannon if you choose the
	and geometry to		wrong operations to solve real world
	i cal-woniù scendfios.		problems?
			problems:
1	1	1	

Year at a Glance Scope and Sequence for Math

Overarching Goal of the Curricular Area: Students will be able to use mathematical skills by problem solving, critiquing, analyzing, and reasoning the world around them for a variety of lifelong situations.

Unit	Lipit Goal	Enduring Understandings	Essential Questions
Theme	Unit Goal	for the Unit	for the Unit
Operations and Algebraic Thinking	Students will be able to write and interpret numerical	Students will understand that the order of operations affects the value of the answer.	Why is there an order to follow to compute answers?
	expressions.	Students will understand that patterns can be put together to generate new patterns.	How do operations affect numbers?
	Students will be able to analyze patterns and relationships.		How do patterns make understanding easier?
			How does finding patterns help to solve problems?
Number and Operations in Base Ten	Students will be able to understand the place value system.	Students will understand that each place in the place value system is limited to a single digit.	How does the location of a number in the place value system affect the value of the number?
	Students will be able to perform operations with	relationship exists between two adjacent places in the place value system.	How is place value used to round numbers?
	multi-digit whole numbers and with decimals to the	Students will understand that placement of a number into a place in the place value system has a significant effect on its value.	What is the significance of the decimal point?
	nunareaths.	Students will understand that a variety of different strategies can be used to compute	How are products and quotients related?
		multi-digit numbers.	How do we solve problems with whole numbers and decimals?
			What types of strategies can be used to compute with multi-digit numbers?
Number and Operations – Fractions	Students will be able to use equivalent fractions as a	Students will understand that fractions must have common denominators in order to be added or subtracted	When do we use addition or subtraction of fractions?
	strategy to add and subtract fractions.	Students will understand that a fraction is division of the numerator by the denominator.	What does it mean to divide by a fraction?
	Students will be able to apply and extend	(a/b=a ÷ b)	Why would we need to divide by a fraction?
	understandings of multiplication and division to multiply	a whole number by a fraction less than one, the product will be smaller than the whole number.	
	and divide fractions.	Students will understand that when multiplying a whole number by a fraction greater than one, the product will be larger than whole number.	

Measurement and	Students will be able	Students will understand that measurement	Why would one need to convert
Data	to convert like	units vary in the (U.S.) customary system	measurements from one unit to
	measurement units	differently than in the metric system.	another?
	within a given		
	measurement	Students will understand that understanding	How does measurement help solve
	system.	place value helps one to understand the metric	problems?
		system.	
	Students will be able		How can collecting information be
	to represent and	Students will understand that data can be	useful in solving problems?
	interpret data.	represented in a visual format.	
			What types of data can be graphed on
	Students will be able	Students will understand that volume is an	a line plot with a fractional scale?
	to understand	attribute of solid figures which involves filling	
	concepts of volume	up space.	When would we measure volume?
	and relate volume to		
	multiplication and to	Students will understand that volume is related	What are different ways to find volume
	addition.	to the operations of multiplication and addition.	of an object?
Geometry	Students will be able	Students will understand that the first number	Why would we need to graph on a
	to graph points on	in an ordered pair indicates how to travel	coordinate plane?
	the coordinate plane.	horizontally along the x-axis and the second	
		number indicates how to travel vertically along	How do we classify two dimensional
	Students will be able	the y-axis.	figures?
	to classify two-		
	dimensional figures	Students will understand that attributes	Why would we need to classify a two
	into categories based	belonging to a category of two dimensional	dimensional figure?
	on their properties.	figures also belong to all subcategories of that	
		category.	

Year at a Glance Scope and Sequence for Math

Overarching Goal of the Curricular Area: Students will be able to use mathematical skills by problem solving, critiquing, analyzing, and reasoning the world around them for a variety of lifelong situations.

Unit	Unit Cool	Enduring Understandings	Essential Questions for
Theme	Unit Goal	for the Unit	the Unit
Whole Number and Patterns	Students will solve order of operations problems. Students will know the Mental Math Properties. Students will identify patterns and sequences.	Students will understand that the order of operations (PEMDAS), performed accurately will yield the correct answer. Students will understand that the Commutative Property, Associative Property, and Distributive Property can lead to solving a problem mentally. Students will understand that patterns and sequences directly affect the world around them.	How does changing the order of operations affect the outcome when simplifying an expression? How do you express a pattern to show a relationship? How can patterns be used to make predictions?
Introduction to Algebra	Students will translate between tables and expressions. Students will solve one step addition, subtraction, multiplication, division and multi- step algebraic equations. Students will explore perimeter and area using algebraic reasoning.	Students will understand that converting words into expressions will help to solve story problems. Students will understand that showing your work within a one-step algebraic equation directly impacts your ability to solve a multi-step algebraic equation. Students will understand that using algebraic reasoning to solve for the perimeter, area, and missing side of a figure is a lifelong skill.	How do we use algebraic expressions to analyze or solve problems? How is algebraic equation like a balanced scale?
Decimals	Students will represent, compare, and order decimals. Students will solve addition, subtraction, multiplication, and division decimal problems.	Students will understand that representing, comparing, and ordering decimals is a skill needed to be successful in society, especially when dealing with money. Students will understand that there is more than one way to correctly solve decimal problems, but some are more effective and efficient than others.	What does a decimal represent? How can numbers in different forms becompared?

Number Theory and Fraction Operations	Students will solve multi-step decimal story problems. Students will use equivalent fractions to compare and order fractions. Students will use prime factorization and be able to find a greatest common factor. Students will add, subtract, multiply, and divide unlike and like fractions, as well as mixed numbers. Students will solve algebraic fraction equations.	Students will understand that finding a common denominator is needed to compare, order, add, and subtract fractions accurately. Students will understand that there can be more than one common denominator when converting or comparing equivalent fractions. Students will understand that adding, subtracting, multiplying, and dividing fractions and mixed numbers is a skill you must know to solve future problems accurately.	How can the knowledge of divisibility affect finding a greatest common factor or least common multiple? How can adding, subtracting, multiplying and dividing fractions be used to solve real world problems? How can there be more than one way to get to an answer when thinking in terms of equivalent fractions?
Collecting and Displaying Data	Students will identify a statistical question. Students will construct and analyze a bar graph, double bar graph, line graph, and double line graph. Students will create a stem-and-leaf plot, and be able to make sense of it. Students will effectively use mean, median, mode, and range of a given data set.	Students will understand that there are many ways to show visual data, but depending on the data, some graphs, tables, and charts, are better choices than others. Students will understand that being able to analyze and critique different tables, bar, graphs, and line graphs is a daily skill used throughout life. Students will understand that solving for mean, median, mode, and range is a staple in making sense of a set of data.	How can different types of graphs be used to organize/show information and potentially patterns? How can you identify features of a graph that may be misleading? What would be the purpose of a misleading graph?
Proportional Relationships	Students will use ratios and rates, and be able to solve for a unit rate. Students will solve a word problem by	Students will understand that knowing how to solve for a unit rate can directly affect how great or poor of a decision the value of a purchase might be. Students will understand that applying knowledge of percents to solving sales tax, tips,	Why are ratios, rates, and proportions important? How are ratios, proportions, and conversions used in the real world?

	setting up and solving	and discount problems directly affects their	
	proportions.	money management.	
	Students will convert time and temperature.	Students will understand how to convert time and temperature.	
	Students will apply percents and solve percent problems.		
Measurement (Geometry, Area, Volume)	Students will find the perimeter and area of polygons and circles.	Students will understand that finding perimeters, areas, and volumes are most effectively found by use of discovered formulas. Students will understand that it is important to	How do two-dimensional and three- dimensional figures differ? How are geometric properties used to solve problems in everyday life?
	Students will find the area of a triangle, trapezoid, and composite figures.	find the volume of rectangular and triangular prisms and cylinders, and effectively know how to solve for them.	What types of problems are solved with measurement?
	Students will find the volume of rectangular and triangular prisms and cylinders.	Students will understand that there is a connection in finding the surface area of a rectangular prism or cylinder would affect how much material would be needed to cover a prism or cylinder. (Ex: Cardboard, wrapping paper, etc.)	
	Students will solve for the surface area of rectangular prisms, square pyramids, and cylinders.		
Integers and Probability	Students will solve for absolute values and integer equations. Students will plot	Students will understand that absolute value means the distance away from zero on a number line. Students will understand that correctly plotting points on a Coordinate Plane will effectively lead to translations on the Coordinate Plane	How can integers be represented by models and real world situations? How can you recognize integers and their opposites with and without the number line?
	points and show translations on the Coordinate Plane. Students will identify differences between theoretical and experimental probabilities.	Students will understand that the more outcomes a sample has in a given experiment, the closer the theoretical and experimental probability becomes.	How can predictions be made based on data?

Year at a Glance Scope and Sequence for Math

Overarching Goal of the Curricular Area: Students will be able to use mathematical skills by problem solving, critiquing, analyzing, and reasoning the world around them for a variety of lifelong situations.

Unit	Linit Goal	Enduring Understandings	Essential Questions
Theme	Unit Goal	for the Unit	for the Unit
Algebraic Reasoning	Students will simplify numerical expressions using order of operations.	Students will understand that simplifying a numerical expression using order of operations (PEMDAS) will result in the correct answer.	How does changing the order of operations (PEMDAS) affect the outcome when simplifying a numerical expression?
	Students will translate words into numbers, variables,	an algebraic expression only like terms can be combined.	How do I know which mathematical operation to use when translating words into math?
	Students will simplify algebraic	expression in different forms in a problem context can clarify the problem.	Why are variables used?
Integers and Rational Numbers	Students will compare and order integers and find	Students will understand that an absolute value represents distance on a number line, therefore it is always non-negative.	Why are rational numbers important and useful?
	absolute values. Students will add.	Students will understand that addition and	How can we tell if two rational numbers are equal?
	subtract, multiply, and divide integers.	Students will understand that multiplication and division are inverse operations.	
	Students will write fractions as decimals and vice versa	Students will understand that integers can be	
Applying Rational Numbers	Students will add, subtract, multiply, and divide decimals.	Students will understand that rational numbers represent a part out of a whole.	How is computation with rational numbers similar and different to whole number computation?
	Students will add, subtract, multiply, and divide fractions	denominators are required when adding and subtracting fraction and mixed numbers.	How is adding unlike fractions similar and different to adding like fractions?
	and mixed numbers. Students will solve equations containing	Students will understand that when dividing fractions, multiply by its reciprocal or multiplicative inverse.	How is multiplying fractions similar and different from adding fractions?
Proportional	decimals or fractions.	Students will understand that figures are similar	Why do we use cross products to solve
Relationships	proportions and solve using cross	only if corresponding side lengths are proportional and corresponding angles are	proportions?
	products.	congruent.	How does using proportions determine if two figures are similar?
	Students will use ratios to determine if two figures are	Students will understand that proportions express how quantities change in relationship to each other.	

	Students will use similar figures to find an unknown measures.		
Graphs and Functions	Students will plot and identify ordered pairs on a coordinate plane. Students will determine the slope of a line and to recognize constant and variable rates of change. Students will identify,	Students will understand that equations are fundamental tools for modeling situations. Students will understand that functions are used to describe physical relationships in the real world. Students will understand that ordered pairs show an exact location on a coordinate plane.	How do we represent functions through graphic representations? How is the location of a point on a coordinate plane described?
	write, and graph an equation of direct variation.		
Percents	Students will write decimals and fractions as percents. Students will solve problems involving percent of change.	Students will understand how quantities change in relationship to each other (decimals to percents, fractions to percents). Students will understand that fractions, decimals, and percents express a relationship between two numbers.	How are common fractions, decimals, and percents alike and different? How do we convert any form of a rational number to at least two other forms?
	Students will solve problems involving simple interest.		
Geometric Figures	Students will identify and describe geometric figures. Students will identify parallel, perpendicular, and skew lines, and angles formed by a transversal. Students will classify triangles by their side lengths and angle measures. Students will name, identify, and draw	Students will understand that analyzing geometric relationships develops reasoning skills. Students will understand that points, lines, and planes are the foundation of geometry. Students will understand that objects can be described and compared using their geometric attributes.	How are geometric shapes and objects classified? How are geometric properties used to solve problems in everyday life?
Measurement and 3-D Geometry	types of quadrilaterals. Students will find the perimeter of a polygon and the circumference of a circle. Students will find the area of circles. Students will identify various three- dimensional figures.	Students will understand that perimeter and area are distinct concepts that require different units of measure and appropriate labels. Students will understand that three- dimensional figures have surface area and volume that require different units of measure and appropriate labels.	How do you use different types of measurements? What are the connections between perimeter and area and what are their appropriate labels?

	Students will find the surface area and volume of prisms and cylinders.		
Data Analyzing and Probability	Students will find the mean, median, mode, and range of a data set. Students will display and analyze data in box-and-whisker plots. Students will find experimental and theoretical probability. Students will find the probability of independent and dependent events. Students will find the number of possible combinations and permutations.	Students will understand that the way data is collected and displayed influences its interpretation. Students will understand that the expected outcome of an event is a prediction of what might happen in the long run.	Why is data collected, recorded, and analyzed? How do people use data to influence others? How is the probability of an event determined and described?
Multi-Step Equations and Inequalities	Students will solve multi-step equations. Students will solve equations with variables on both sides. Students will solve one-step inequalities by adding, subtracting, multiplying, or dividing. Students will solve multi-step	Students will understand that mathematical equations represent relationships. Students will understand that the inequality symbol reverses when multiplying and dividing both sides of an inequality by a negative number.	What strategies can be used to solve for unknowns? How can relationships be expressed symbolically?
	subtracting, multiplying, or dividing. Students will solve multi-step inequalities.		

Year at a Glance Scope and Sequence for Math

Overarching Goal of the Curricular Area: Students will be able to use mathematical skills by problem solving, critiquing, analyzing, and reasoning the world around them for a variety of lifelong situations.

Unit **Enduring Understandings Essential Questions** Unit Goal Theme for the Unit for the Unit Linear Equations Use mathematical Rate is a ratio that compares two quantities of How does one interpret the number of solutions to linear equations in one properties to different units, a unit rate is a ratio between transform given two measurements in which the second term is variable? equations into an one. Why is there a need to represent equivalent equation The relationship between variables can be relationships between variables in Solve linear represented using work descriptions, tables, more than one way? equations with graphs and equations. When is a relationship between two rational number variables proportional? Proportional relationships can be represented coefficients by lines and linear equations. How does thinking of a unit rate as the Graph proportional When slopes are the same, the rise divided by slope of a line help to solve problems? relationship the run is constant. Compare two When the ratio of rise to run is the same different between two right triangles, their proportional corresponding sides must be proportional. relationship represented in The solution to a linear equation is a point or tables, graphs and set of points which will make the equation true. equations Properties of operations with numbers can be Write and interpret applied to variables. an equation in slope intercept form; $\square =$ 22: 2 = 22 + 2Functions A function is a rule that assigns to each input Why does one need to define a Compare properties of two functions exactly one output. function? when they are Functions describe situations where one When should functions be evaluated represented in quantity determines another and compared? different ways. The graph of a function is the set of ordered How does knowing the algebraic Use equations, pairs consisting of an input and the properties of a function help to graph graphs and tables to corresponding output that function? categorize functions

Math Grade 8

	as linear or non-	Functions can be represented in four ways:	
	linear	algebraically graphically numerically in tables	
	inical	algebraically, graphically, numerically in tables	
	Write and interpret	and by verbal descriptions.	What applications could be
	function constinue	linear functions have a constant rate of shares	represented by variables that are not
		Linear functions have a constant rate of change	related by a linear function?
	from multiple	between any two points.	
	representations:		How are aspects of a function reflected
	algebraically,	Linear functions can be used to model	in the different representations?
	graphically,	relationships between two quantities	
	numerically in tables	-	Explain how you determine if a
	and by verbal	The equation represents the relationship	function is linear or non-linear?
	descriptions.	between the x-value and the y-value.	
			Why would one use functions to model
	Interpret the rate of	There are many different functional	relationships between quantities?
	change and the y-	relationships that are not linear.	
	intercept from the		What are the distinguishing
	context of the		characteristics of a graph of a function?
	problem.		
Transformations	Model characteristics	Transformations (translations, reflections and	Why does one need to perform
and Angle	of figures before and	rotations) produce images of exactly the same	transformations on figures?
Relationships	after	size and shape as the pre-image and are known	
	transformations.	as rigid transformations.	How does knowing two figures are
			congruent or similar help one to solve
	Identify shapes that	In rigid transformations the measures of the	problems?
	are similar or	corresponding angles and corresponding line	
	congruent.	segments remain equal (are congruent)	What are the relationships between
	U		the interior and exterior angles of a
	Make conjectures	Congruent figures have the same shape and size	triangle?
	about the		C C
	relationships	There are relationships between the interior	What is the effect of dilations,
	hetween various	and exterior angles of a triangle.	translations. rotations and reflections
	angle measures		on two dimensional figures
	angle measures	There are relationships among the angles	
		formed when parallel lines are cut by a	What is the effect of dilations.
		transversal	translations rotations and reflections
		chanisversan.	on two dimensional figures in the
		When two angles of one triangle are congruent	coordinate plane2
		to two angles of another triangle, the third	coordinate plane:
		angles are also congruent	What are the relationships among the
		On its own, congruence of corresponding angles	angles formed when parallel lines are
		determines similarity only for triangles	cut by a transversal?
		determines similarity only for triangles.	What is the relationship between the
		Cimilar figures have congruent angles and side	what is the relationship between the
		similar lightes have congruent angles and side	measure of an exterior angle and the
			other two angles of a triangle?
		Similar figures are produced from dilations.	How can you use this relationship to
			How call you use this relationship to
		A scale factor greater than one will produce an	use reasoning to find the measure of
		enlargement in the figure while a scale factor	missing angles?
		loss than one will produce a reduction in size	
		less than one will produce a reduction in size.	
Rational, Irrational	Convert a decimal	All numbers, rational and irrational, have a	Why does one need to distinguish
and the	expansion that	location on a number line.	between rational and irrational
Pythagorean	repeats eventually		numbers?
Theorem	into a rational	Rational numbers show that the decimal	
	number	expansion repeats eventually.	

	Use rational	The non-perfect square roots are irrational.	How does one locate irrational numbers
	approximations of		on a number line?
	irrational numbers to	Perfect square numbers are the whole numbers	
	locate on a number	each raised to the second power.	How can you determine if a decimal
	line. estimate the		equivalent of a fraction will either
	value and compare	Perfect cube numbers are the whole number	terminate or repeat?
	the size of irrational	each raised to the third power.	
			How can you find the fraction
	numbers.	Every irrational square root can be estimated	equivalent to a repeating decimal?
		hy its location between two rational square	equivalent to a repeating decimar:
	Use models to prove	by its focution between two futional square	What is the relationship, if any between
	the Pythagorean	roots, e.g. $\sqrt{7}$ is between $\sqrt{4}$ and $\sqrt{9}$.	what is the relationship, if any, between
	Theorem.		non-perfect square roots and irrational
		The Pythagorean Theorem can be used to find	numbers?
	Apply the	the distance between two points.	
	Pythagorean		How can one use the Pythagorean
	Theorem in real-	Theorem's are proved using models.	Theorem to solve real-world and
	world and		mathematical problems?
	mathematical		
	problems in two and		What is the relationship between the
	three dimensions		sides of a right triangle and its
			hypotenuse?
	Elexibility between		
	fractions decimals		
	naccions, decimals,		
	percent and integers		
Statistics	Examine the	Linear models can be represented with linear	What does the slope of a line say about
Statistics	rolationshins		the relationship in a scatter plot?
	hotwoon two	equations.	the relationship in a scatter plot:
		Rivariate data refers to two variable data, one	Why is it important to describe patterns
	variables and	to be graphed on the visit and the other on	why is it important to describe patterns
	describe patterns of	to be graphed on the x-axis and the other on	
	association.	the y-axis.	quantities?
	Communicate	Lines used to model the association between	When is a scatterplet used to determine
		two quantities will provide more information	if there is an association between two
	different patterns of	two quantities will provide more information	
	association with	than just the data points themselves.	quantities?
	scatter plots of	Curricht lines and idel and due and de	
	bivariate data and	Straight lines are widely used to model	when is a two way table used to
	explain what the	relationships between two quantities variables.	determine if there is an association
	different patterns		between two variables?
	mean in specific	Scatterplots show whether or not there is an	
	contexts.	association between two quantities.	
	Model real world	The model line gets more accurate as more	
	linear relationships	data points are located on the line	
	on a granh		
	011 d 81 dp11		
	Communicate the		
	meaning of the fit line		
	and its properties in		
	torms of the context		
	of the grash		
	or the graph		
Exponents and	Apply their	Numbers can be expressed in many equivalent	Why does one need to express a
Scientific Notation	knowledge of integer	forms	number in a form with integer
	exponent properties		exponents?
	to generate		exponents:
	to generate		

	equivalent numerical	Very large or very small quantities can be	Can exponents be negative, and if so,
	expressions.	estimated using numbers expressed in scientific	what does that mean?
		notation	
	Estimate very large		Can we have a zero exponent if so
	or vorv small	There are properties of integer expenses that	what does that mean?
	or very small	There are properties of integer exponents that	what does that means
	quantities, and to	help generate equivalent numerical	
	express how many	expressions.	What are the properties/operations
	times as much one is		involving exponents
	than the other.	Operations can be performed with numbers	
		expressed in scientific notation.	Why does one need to write numbers
	Perform operations		in scientific notation?
	with numbers		
	expressed in		What is the advantage of performing
	sciontific notation		operations on numbers expressed in
	scientine notation.		scientific notation rather than numbers
			in standard form?
			In standard form?
Geometric	Use models to	The Pythagorean Theorem can be used to find	How can one use the Pythagorean
Formulas	explain the	the distance between two points.	Theorem to solve real-world and
	Pythagorean		mathematical problems?
	Theorem	The sum of the squares of the legs is equal to	
	meorem.	the square of the hypotopuse in a right triangle	What is the relationship between the
	A starburkha	the square of the hypotenuse in a right thangle.	what is the relationship between the
	Apply the	Ciuca that side leasthe with this relationship	sides of a right triangle and its
	Pythagorean	Given three side lengths with this relationship	hypotenuse?
	Theorem to various	forms a right triangle.	
	situations in two and		What is the relationship, if any,
	three dimensions.	There are relationships between the following	between volume of cones, cylinders,
		formulas, when objects have the same height:	and spheres?
	Derive volume	cylinder to right rectangular prism, cylinder to	
	formulas for a	cone, and sphere to cylinder	How can one use volume to solve real-
	cylinder, cone and		world and mathematical problems?
	cohoro from provious	Volume is a unit of measurement that indicates	p
	sphere from previous	the number of cubic units a three-dimensional	Why does a specific formula work?
	known volume	chang can hold	why does a specific formala work:
	formulas.	shape can noid.	How doos the formula relate to the
			How does the formula feate to the
Custome of	Coluc linear sustance		Mileasure and ligure r
Systems of	Solve linear systems	Properties of operations with numbers can be	what is a system of linear equations?
Equations	of equations	applied to variables.	
	graphically,		What applications require solving
	algebraically and by	Solutions to a system of two linear equations	simultaneous linear equations?
	inspection depending	are points that will make both equations true.	
	on the problem		How does mathematical properties
	presented.	Solutions to a system of two linear equations	help solve linear systems of equations?
		correspond to points of intersection of their	
	Describe the	graphs.	How can you apply a system of linear
	meaning of solution		equations to real-world situations?
	to a system of	Equations need to be examined for similarities	
	to a system of	and differences to facilitate finding solutions	What methods can be used to solve
	equations.	and anterences to radiitate infaing solutions.	systems of linear equations?
	Determine the rest		eyetenie er intear equations:
	Determine the most		How would you describe the solution of
	efficient way to solve		a system of linear asystics?
	a system based on		a system of intear equations?
	the properties of		
	given situation		How do you know now many solutions
	-		a systems will have?

	How do you determine the best
	method to solve a system of linear
	equations?
	•

Year at a Glance Scope and Sequence for Math

Overarching Goal of the Curricular Area: Students will be able to use mathematical skills by problem solving, critiquing, analyzing, and reasoning the world around them for a variety of lifelong situations.

Unit	Unit Goals	Enduring Understandings	Essential Questions
Theme		for the Unit	for the Unit
Expressions, Equations, and Functions	Students will be able to: 1. Mathematically model a real-world scenario with an unknown value 2. Determine whether or not a relation is a function	Students will understand that: 1. Variables can be used to represent an unknown quantity or quantities 2. Functions have independent and dependent variables, where the dependent variable is caused by the independent variable	 How are variables applicable to various life situations? How can equations be used to model real world scenarios?
Linear Relationships	Students will be able to: 1. Solving Linear Relations 2. Graph Linear Relations 3. Model and interpret using linear relationships	Students will understand that: 1. The graph of a linear equation is a line 2. You can solve for a variable using multiple methods following the rules of operations 3. Linear relationships can be represented with tables, equations, graphs, and scenarios 4. Relationships with a constant rate of change can be modeled linearly and can be used to make predictions	 What are some examples and non- examples of linear relationships from real life? Justify your answer. Is it necessary to follow algebraic rules when solving equations? Explain why or why not? Are there multiple ways of solving algebraic equations?
Linear Systems	Students will be able to: 1. Solve linear systems graphically 2. Solve linear systems algebraically 3. Model scenarios using systems and interpret solution(s)	Students will understand that: 1. The solution to a system is the point(s) of intersection 2. Algebraically the solution(s) is the value(s) that make the relations true 3. Systems can be used to compare linear relationships	 Create a scenario that can be solved using systems of linear relations. When would each method be the most efficient for solving systems of equations and why?
Quadratics/Radicals	Students will be able to: 1. Determine the roots and vertex of a quadratic function algebraically/graphically 2. Model scenarios of quadratic relationships to interpret the roots and vertex 3. Perform operations with and solve equations with radicals	Students will understand that: 1. The graphs of quadratics are parabolas 2. The factored form of a quadratic can be used to find where curve crosses the x-axis 3. Quadratics can be used to model projectile motion 4. A Radical undoes a square	 What are the most important points on a parabola and why? How can you tell if data is linear, quadratic, or something else? When would each method be the most efficient for solving quadratics and why?

Algebra 1

Exponential	Students will be able to:	Students will understand that:	1. What are some examples and non-
Functions and	1. Graph exponentials	1. The shape of an exponential function is	examples of exponential relationships
Properties of	2. Model growth/decay	unique	from real life? Justify your answer.
Exponents	using exponential	Exponentiation is just repeated	2. How can you tell if data is linear,
	functions	multiplication	quadratic, or exponential?
	Apply exponent	3. You can expand exponential expressions to	
	properties to simplify	derive the properties	
	monomial expressions		
Rational Functions	Students will be able to:	Students will understand that:	1. Why is it useful to rewrite an
	1. Add/subtract/	1. Algebraic operations with fractions are the	expression in equivalent forms?
	multiply/divide rational	same as numeric operations with fractions	
	functions	(You need a common denominator when	
	2. Solve Rational	adding/subtracting, but not when	
	Equations	multiplying/dividing)	
		Algebraic manipulation is required to	
		simplify and solve rationals	

Year at a Glance Scope and Sequence for Math

Overarching Goal of the Curricular Area: Students will be able to use mathematical skills by problem solving, critiquing, analyzing, and reasoning the world around them for a variety of lifelong situations.

Essential Questions Unit **Enduring Understandings Unit Goals** for the Unit for the Unit Theme Vocabulary and Students will be able Students will understand that: What is the process of writing a good Notation 1. Vertical angles are formed by intersecting definition in geometry and how is it to: 1. Identify and notate lines that share a common vertex, but not a possible to test a definition? geometric objects common side used throughout the 2. A linear pair of angles are two angles who course 2. Identify, create share a common vertex and side and whose definitions for, and noncommon sides form a line sketch objects with special characteristics 3. We can't assume things that aren't marked 3. Create definitions on a Geometric diagram for parts of geometric objects Reasoning in Students will be able Students will understand that: How is inductive reasoning different Geometry 1. Vertical angles are congruent from deductive reasoning? Provide an to: 1. Use inductive example of each. reasoning to find the next term in a 2. Linear pairs of angles sum to 180 degrees What is an example of a mathematical number or picture model? pattern 2. Generalize basic 3. You can write an explicit rule for a linear number patterns to number sequence if you know the starting find the nth term in a value and common difference number sequence 3. Write explicit rules for finding terms in sequences involving triangular and rectangular numbers 4. Apply mathematic models to problem solve 5. Apply the vertical angle conjecture, linear pair conjecture, and parallel line conjectures to find missing angle measures

Geometry

Tools of Geometry	Students will be able to: 1. Use a compass/straightedge or dynamic software to perform basic geometric constructions 2. Construct and apply points of concurrency to solve real world situations 3. Apply constructions to solve real world problems	Students will understand that: 1. Geometric sketches are freehand and require markings to show important information (i.e. congruent, parallel, and perpendicular segments) 2. Constructions are done using only a straightedge and compass/patty paper, with no measurement	Describe a way that our basic constructions can be used to create a square? Explain the process of creating a logo using constructions.
Discovering and Proving Triangle Properties	Students will be able to: 1. Inductively and/or deductively prove conjectures involving triangles 2. Deductively prove that triangles are congruent 3. Deductively prove that parts of triangles are congruent	Students will understand: 1. The sum of the interior angles of any triangle is 180 degree 2. There are shortcuts to prove that two triangles are congruent, (we do not need all 6 pieces of information) 3. what it means to deductively prove a conjecture	Provide examples of why AAA and SSA are not valid for proving triangles congruent. How is inductive reasoning different from deductive reasoning? Provide an example of each.
Discovering and Proving Polygon Properties	Students will be able to: 1. Inductively and/or deductively prove the sum of the interior angles of any polygon and the sum of the exterior angles of any polygon 2. Inductively and/or deductively prove and apply properties of special quadrilaterals 3. Inductively and/or deductively prove the properties of midsegments of triangles and trapezoids	Students will understand that: 1. Polygons can be broken up into triangles to calculate the sum of the interior angles 2. The special quadrilaterals can be arranged in a Venn Diagram to help understand their properties	Why is it important to deductively prove properties rather than just inductively proving them? What are the defining characteristics of all the special quadrilaterals?
Discovering and Proving Circle Properties	Students will be able to: 1. Inductively and/or deductively prove and apply properties involving tangents, chords, and arcs of a circle 2. Calculate the circumference/arc length of a circle	Students will understand that: 1. A circle is the set of all points equidistant from a given point 2. Pi is the ratio of the circumference to the diameter for any circle	Does 3.141 work as an approximation for pi? When would it be useful to use arc measure versus arc length?

Transformations	Students will be able	Students will understand that:	How can transformations bein us prove
	to:	1. Congruent polygons have congruent	that figures are congruent or similar?
	1. Perform	corresponding angles/sides	J
	translations,	2. Two congruent figures can be mapped onto	
	reflections, and	one another using translations, reflections, and	
	dilations using patty	rotations, (rigid transformations)	
	paper or dynamic	3. Two similar figures can be mapped onto one	
	software	another using rigid transformations and	
	2. Describe the	dilations, (a non-rigid transformations)	
	properties of		
	reflections,		
	translations, and		
	dilations		
	Describe the		
	transformations		
	necessary to		
	transform a pre-		
	image onto its image		
Area/Volume	Students will be able	Students will understand:	How can we derive the area formulas
	to:	1. Area is the size of a 2 dimensional surface	tor parallelograms, trapezoids,
	1. Calculate the area	2. Figures can be broken down into restanting	triangles, kites, and circles?
	or a figures on a grid,	2. Figures can be broken down into rectangles	How can physical models help
	rectangles,	or triangles to calculate the area	How can physical models help us
	trianglos tranozoids	2 The relationship between volume and area	prisms cylinders pyramids cones and
	kites circles and	5. The relationship between volume and area	snheres?
	regular nolvgons		spireres:
	2. Calculate the		
	surface area of 3-d		
	objects		
	3. Calculate the		
	volume of prisms,		
	cylinders, pyramids,		
	cones, and spheres		
	Apply area and		
	volume to solve real		
	world problems		
Dulhas	Charles and States and States		the second data is the first state
Pythagorean	Students will be able	Students will understand that:	It is often said that similar figures have
i neorem, Similarity,		1. The Pythagorean theorem allows us to find a	the same snape, but different size."
	I. Apply the	know any two sides	what is meane by the same shape"?
ingonometry	erythagorean theorem	KINOW ANY TWO SIDES.	How doos right triangle trigonometry
	triangles to solve for	2 Trigonometric values are the ratios of side	relate to similar triangles?
	missing cides	2. Theorem the values are the ratios of SIDE	
	2 Lise similarity to	וכווצנווס.	
	find missing side		
	lengths		
	3. Use similarity		
	shortcuts to prove		
	two triangles are		
	similar		
	4. Use basic right		
	triangle trigonometry		
	to solve for missing		
	sides or angles		

Year at a Glance Scope and Sequence for Math

Overarching Goal of the Curricular Area: Students will be able to use mathematical skills by problem solving, critiquing, analyzing, and reasoning the world around them for a variety of lifelong situations.

Unit Theme	Unit Goals	Enduring Understandings for the Unit	Essential Questions for the Unit
Vocabulary and Notation	Students will be able to: 1. Identify and notate geometric objects used throughout the course 2. Identify, create definitions for, and sketch objects with special characteristics 3. Create definitions for parts of geometric objects	Students will understand that: 1. Vertical angles are formed by intersecting lines that share a common vertex, but not a common side 2. A linear pair of angles are two angles who share a common vertex and side and whose noncommon sides form a line 3. We can't assume things that aren't marked on a Geometric diagram	What is the process of writing a good definition in geometry and how is it possible to test a definition?
Geometry	 Students will be able to: 1. Use inductive reasoning to find the next term in a number or picture pattern 2. Generalize basic number patterns to find the nth term in a number sequence 3. Write explicit rules for finding terms in sequences involving triangular and rectangular numbers 4. Apply mathematic models to problem solve 5. Apply the vertical angle conjecture, linear pair conjecture, and conjecture, 	 Students will understand that: Vertical angles are congruent Linear pairs of angles sum to 180 degrees You can write an explicit rule for a linear number sequence if you know the starting value and common difference 	How is inductive reasoning? Provide an example of each. What is an example of a mathematical model?
	conjectures to find missing angle measures		

Advanced Geometry

Tools of Geometry	Students will be able	Students will understand that:	Describe a way that our basic
	to:	1. Geometric sketches are freehand and	constructions can be used to create a
	1. Use a	require markings to snow important	square?
	or dynamic software	nerpendicular segments)	Explain the process of creating a logo
	to perform basic	perpendicular segments	using constructions.
	geometric	2. Constructions are done using only a	
	constructions	straightedge and compass/patty paper, with no	
	2. Construct and	measurement	
	apply points of		
	concurrency to solve		
	real world situations		
	3. Apply		
	real world problems		
Discovering and	Students will be able	Students will understand	Provide examples of why AAA and SSA
Proving Triangle	to:	1. The sum of the interior angles of any triangle	are not valid for proving triangles
Properties	1. Inductively and	is 180 degree	congruent.
	deductively prove		
	conjectures involving	2. There are shortcuts to prove that two	How is inductive reasoning different
	triangles	triangles are congruent, (we do not need all 6	from deductive reasoning? Provide an
	2. Deductively prove	pieces of information)	example of each.
	that triangles are		
	congruent	3. what it means to deductively prove a	
	3. Deductively prove	conjecture	
	are congruent		
Discovering and	Students will be able	Students will understand that:	Why is it important to deductively
Proving Polygon	to:	1. Polygons can be broken up into triangles to	prove properties rather than just
Properties	1. Inductively and	calculate the sum of the interior angles	inductively proving them?
	deductively prove the		
	sum of the interior	2. The special quadrilaterals can be arranged in	What are the defining characteristics of
	angles of any polygon	a Venn Diagram to help understand their	all the special quadrilaterals?
	and the sum of the	properties	
	exterior angles of any		
	2 Inductively and		
	2. Inductively and deductively prove and		
	apply properties of		
	special guadrilaterals		
	3. Inductively and		
	deductively prove the		
	properties of		
	midsegments of		
	triangles and		
Discovering and	Students will be able	Students will understand that:	Does 3 1/1 work as an approximation
Proving Circle	to.	1. A circle is the set of all points equidistant	for ni?
Properties	1. Inductively and	from a given point	tor pr
	deductively prove and		When would it be useful to use arc
	apply properties	2. Pi is the ratio of the circumference to the	measure versus arc length?
	involving tangents,	diameter for any circle	
	chords, and arcs of a		
	circle		
	2. Calculate the		
	length of a circle		

Transformations	Students will be able to: 1. Perform translations, reflections, and dilations using patty paper or dynamic software 2. Describe the properties of reflections, translations, and dilations 3. Describe the transformations necessary to transform a pre- image onto its image	Students will understand that: 1. Congruent polygons have congruent corresponding angles/sides 2. Two congruent figures can be mapped onto one another using translations, reflections, and rotations, (rigid transformations) 3. Two similar figures can be mapped onto one another using rigid transformations and dilations, (a non-rigid transformations)	How can transformations help us prove that figures are congruent or similar?
Area/Volume	Students will be able to: 1. Calculate the area of a figures on a grid, rectangles, parallelograms, triangles, trapezoids, kites, circles and regular polygons 2. Calculate the surface area of 3-d objects 3. Calculate the volume of prisms, cylinders, pyramids, cones, and spheres 4. Apply area and volume to solve real world problems	Students will understand: Area is the size of a 2 dimensional surface Figures can be broken down into rectangles or triangles to calculate the area The relationship between volume and area	How can we derive the area formulas for parallelograms, trapezoids, triangles, kites, and circles? How can physical models help us derive the formulas for the volumes of prisms, cylinders, pyramids, cones, and spheres?
Pythagorean Theorem, Similarity, and Right Triangle Trigonometry	Students will be able to: 1. Apply the Pythagorean theorem or special right triangles to solve for missing sides 2. Use similarity to find missing side lengths 3. Use similarity shortcuts to prove two triangles are similar 4. Use basic right triangle trigonometry to solve for missing sides or angles 5. Apply right triangle trigonometry to solve real world problems	Students will understand that: 1. The Pythagorean theorem allows us to find a missing side length on a right triangle when we know any two sides. 2. Trigonometric values are the ratios of side lengths. 3. We can use trigonometry for indirect measurement	It is often said that similar figures have "the same shape, but different size." What is meant by "the same shape"? How does right triangle trigonometry relate to similar triangles?

Year at a Glance Scope and Sequence for Math

Overarching Goal of the Curricular Area: Students will be able to use mathematical skills by problem solving, critiquing, analyzing, and reasoning the world around them for a variety of lifelong situations.

Unit		Enduring Understandings	Essential Questions
Theme	Unit Goals	for the Unit	for the Unit
Expressions, Equations, and Functions	Students will be able to: 1. Mathematically model a real-world scenario with an unknown value 2. Determine whether or not a relation is a function 3. Solve and graph solution(s) for absolute value relationships	Students will understand that: 1. Variables can be used to represent an unknown quantity or quantities 2. Functions have independent and dependent variables, where the dependent variable is caused by the independent variable 3. Absolute value relations represent the distance from zero	 How are variables applicable to various life situations? How can equations be used to model real world scenarios? What types of measurements in your life involve magnitude rather than having negative values?
Linear Relationships	Students will be able to: 1. Solve, graph, and model Linear Relations 2. Create an equation for a line in slope- intercept, point-slope, standard, and vertex form 3. Describe transformations of lines	 Students will understand that: Linear relationships can be represented with tables, equations, graphs, and scenarios The same linear equation can be written algebraically in many different ways. If a scatterplot of real data looks roughly linear, you can find a line that fine the date and use it to make predictions about the relationship 	 What are some examples and non- examples of linear relationships from real life? Justify your answer. What is the best way to write a linear equation? What advantages are there for each form? What patterns can you identify between the equations and graphs of linear relationships?
Linear Systems	Students will be able to: 1. Solve linear systems graphically and algebraically 2. Model scenarios using systems and interpret the solution(s) 3. Create and apply a system of multiple linear equations to represent real-world constraints in a scenario	Students will understand that: 1. Algebraically the solution(s) is the value(s) that make the relations true 2. Systems can be used to compare linear relationships 3. Many real-world constraints on businesses can be modeled mathematically and then used to maximize a businesses' profit.	 Create a scenario that can be solved using systems of linear relations. What method is most efficient for solving systems of equations and why? How can linear optimization be used to help a business determine how much of a product to make?
Quadratics	 Students will be able to: 1. Determine the domain, range, complex roots, & vertex of a quadratic function algebraically/graphically 2. Model and interpret scenarios of quadratic relationships 3. Rewrite the equation of a quadratic in standard, vertex, & factored forms 	Students will understand that: 1. The same quadratic equation can be written algebraically in many different ways. 2. Quadratics can be used to model real world scenarios 3. All quadratic functions can be understood through using transformations	 How can you tell if data is linear, quadratic, or something else? What is the most efficient method for solving quadratics and why? Why is it useful to be able to write a quadratic relationship in multiple algebraic ways?

Algebra 2

Exponential Functions	Students will be able to: 1. Model and graph growth/decay using exponential functions to solve real world problems 2. Apply exponent properties to simplify monomial expressions 3. Determine the domain and range of an exponential function	Students will understand that: 1. You can expand exponential expressions to derive the properties 2. Real-world interest scenarios such as loans and bank accounts can be modeled with exponentials	 How can you tell if data is linear, quadratic, or exponential? How do exponential functions impact financial planning? Which method is best for solving for an unknown exponent and why?
Rational Functions	 Students will be able to: 1. Add/subtract/ multiply/divide rational functions 2. Solve Rational Equations 3. Graph Rational relationships, identifying important characteristics such as domain, range, asymptotes, holes, and x/y intercepts 	Students will understand that: 1. Algebraic operations with fractions are the same as numeric operations with fractions 2. Algebraic manipulation is required to simplify and solve rational equations 3. The graph of a rational function often involves multiple curves that have asymptotes and can be interpreted through transformations	 Why is it useful to rewrite an expression in equivalent forms? How can the individual graphs of the numerator and denominator of a rational function help you to make sense of the rational function's graph as a whole? Why are the asymptotes important to fully understand a rational function?
Radicals and Inverses	 Students will be able to: Perform operations with and solve equations with radicals and rational exponents Graph and determine the domain and range of a radical function under transformations Derive the inverse of a function involving basic operations Compose multiple functions together 	Students will understand that: 1. Basic radical functions can be thought of through transformations 2. Rational exponents represent both a power and a root simultaneously 3. An inverse function is a function that does the opposite operations in the opposite order	 How is solving an equation for a variable related to the equation's inverse? Why rewrite a power and root together as a rational exponent?
Polynomials	Students will be able to: 1. Perform basic operations with polynomial functions, including polynomial division 2. Graph and identify extrema, end behavior, domain and range of polynomials; derive all of the zeroes of a polynomial 3. Sketch a graph of a polynomial if given in factored form and visa- versa	Students will understand that: 1. Polynomials are relations involving variables raised to whole number exponents. 2. Basic characteristics of a polynomial can be determined from the equation, particularly if in factored form. 3. Every polynomial has as many roots as its degree.	 Why invent imaginary numbers? How does polynomial division related to polynomial multiplication both conceptually and algebraically? How can polynomials help us to model more complicated real world relationships?

Year at a Glance Scope and Sequence for Math

Overarching Goal of the Curricular Area: Students will be able to use mathematical skills by problem solving, critiquing, analyzing, and reasoning the world around them for a variety of lifelong situations.

Unit		Enduring Understandings	Essential Questions
Theme	Unit Goals	for the Unit	for the Unit
Expressions, Equations, and Functions	Students will be able to: 1. Mathematically model a real-world scenario with an unknown value 2. Determine whether or not a relation is a function 3. Solve and graph solution(s) for absolute value relationships	Students will understand that: 1. Variables can be used to represent an unknown quantity or quantities 2. Functions have independent and dependent variables, where the dependent variable is caused by the independent variable 3. Absolute value relations represent the distance from zero	 How are variables applicable to various life situations? How can equations be used to model real world scenarios? What types of measurements in your life involve magnitude rather than having negative values?
Linear Relationships	Students will be able to: 1. Solve, graph, and model Linear Relations 2. Create an equation for a line in slope- intercept, point-slope, standard, and vertex form 3. Describe transformations of lines	 Students will understand that: Linear relationships can be represented with tables, equations, graphs, and scenarios The same linear equation can be written algebraically in many different ways. If a scatterplot of real data looks roughly linear, you can find a line that fine the date and use it to make predictions about the relationship 	 What are some examples and non- examples of linear relationships from real life? Justify your answer. What is the best way to write a linear equation? What advantages are there for each form? What patterns can you identify between the equations and graphs of linear relationships?
Linear Systems	Students will be able to: 1. Solve linear systems graphically and algebraically 2. Model scenarios using systems and interpret the solution(s) 3. Create and apply a system of multiple linear equations to represent real-world constraints in a scenario	Students will understand that: 1. Algebraically the solution(s) is the value(s) that make the relations true 2. Systems can be used to compare linear relationships 3. Many real-world constraints on businesses can be modeled mathematically and then used to maximize a businesses' profit.	 Create a scenario that can be solved using systems of linear relations. What method is most efficient for solving systems of equations and why? How can linear optimization be used to help a business determine how much of a product to make?
Quadratics	 Students will be able to: 1. Determine the domain, range, complex roots, & vertex of a quadratic function algebraically/graphically 2. Model and interpret scenarios of quadratic relationships 3. Rewrite the equation of a quadratic in standard, vertex, & factored forms 	Students will understand that: 1. The same quadratic equation can be written algebraically in many different ways. 2. Quadratics can be used to model real world scenarios 3. All quadratic functions can be understood through using transformations	 How can you tell if data is linear, quadratic, or something else? What is the most efficient method for solving quadratics and why? Why is it useful to be able to write a quadratic relationship in multiple algebraic ways?

Advanced Algebra and Trigonometry

Exponential Functions and Logarithms	Students will be able to: 1. Model and graph growth/decay using exponential functions to solve real world problems 2. Apply exponent properties to simplify monomial expressions 3. Solve exponential equations for the variable by using logarithms and their properties 4. Determine the domain and range of an exponential function	Students will understand that: 1. You can expand exponential expressions to derive the properties 2. Real-world interest scenarios such as loans and bank accounts can be modeled with exponentials 3. Logarithms are the inverse of exponential functions	 How can you tell if data is linear, quadratic, or exponential? How do logarithmic and exponential functions impact financial planning? Which method is best for solving for an unknown exponent and why?
Rational Functions	Students will be able to: 1. Add/subtract/ multiply/divide rational functions 2. Solve Rational Equations 3. Graph Rational relationships, identifying important characteristics such as domain, range, asymptotes, holes, and x/y intercepts	Students will understand that: 1. Algebraic operations with fractions are the same as numeric operations with fractions 2. Algebraic manipulation is required to simplify and solve rational equations 3. The graph of a rational function often involves multiple curves that have asymptotes and can be interpreted through transformations	 Why is it useful to rewrite an expression in equivalent forms? How can the individual graphs of the numerator and denominator of a rational function help you to make sense of the rational function's graph as a whole? Why are the asymptotes important to fully understand a rational function?
Radicals and Inverses	 Students will be able to: 1. Perform operations with and solve equations with radicals and rational exponents 2. Graph and determine the domain and range of a radical function under transformations 3. Derive the inverse of a function involving basic operations 4. Compose multiple functions together 	Students will understand that: 1. Basic radical functions can be thought of through transformations 2. Rational exponents represent both a power and a root simultaneously 3. An inverse function is a function that does the opposite operations in the opposite order	 How is solving an equation for a variable related to the equation's inverse? Why rewrite a power and root together as a rational exponent?
Polynomials	Students will be able to: 1. Perform basic operations with polynomial functions, including polynomial division 2. Graph and identify extrema, end behavior, domain and range of polynomials; derive all of the zeroes of a polynomial 3. Sketch a graph of a polynomial if given in factored form and visa- versa	Students will understand that: 1. Polynomials are relations involving variables raised to whole number exponents. 2. Basic characteristics of a polynomial can be determined from the equation, particularly if in factored form. 3. Every polynomial has as many roots as its degree.	 Why invent imaginary numbers? How does polynomial division related to polynomial multiplication both conceptually and algebraically? How can polynomials help us to model more complicated real world relationships?

Conic Sections	 Students will be able to: Identify the standard form for each type of conic section. Graph each type of conic section Given a graph, write the equation of any conic section 	Students will understand that: 1. All conic sections relate to various ways of intersecting a plane with a double right circular cone. 2. All conic sections can be defined as relationships between foci points and lines.	 Can a "parabola" be sideways? Does this fit the definition of a parabola? What is the inverse of a parabola? Can it be described using functions? What commonalities can you find between the equations of parabolas, circles, ellipses, and hyperbolas?
Trigonometric Functions	 Students will be able to: 1. Convert between degree and radian angle measurements 2. Extend the definition of trigonometric relationships to any possible angle 3. Graph the relationships between angles and trigonometric ratios under transformations; determine the domain/range 	Students will understand that: 1. Radian angle measurement is based upon the idea of an arc length compared to that circle's radius 2. Trigonometry can be extended to all angles, not just angles inside right triangles 3. The graphs of trigonometric functions can be transformed	 How can a unit circle on an x-y plane help us understand how the "rules" allow trigonometry to extend to ALL angles? What is the relationship between the unit circle and the graphs of sine and cosine? Explain how right triangle trigonometry relates to sound and light waves?
Trigonometric Identities	 Students will be able to: Use the laws of sines and cosines to find missing sides and angles of any type of triangle Verify trigonometric identities and solve trigonometric equations 	Students will understand that: 1. The laws of Sines and Cosines are derived from creating right triangles within non-right triangles 2. Trigonometric expressions/equations can be manipulated/solved algebraically	 What is the value of having multiple representations of trigonometric functions? How can you use right triangle trigonometry to prove the Law of Sines and Law of Cosines?

Year at a Glance Scope and Sequence for Math

Overarching Goal of the Curricular Area: Students will be able to use mathematical skills by problem solving, critiquing, analyzing, and reasoning the world around them for a variety of lifelong situations.

Unit	Unit Goals	Enduring Understandings	Essential Questions
Theme		for the Unit	for the Unit
Sequences	Students will be able to: 1. Write recursive formulas that generate arithmetic/geometric sequences; apply them to model real world scenarios 2. Identify graphs of sequences as arithmetic, geometric, or shifted geometric 3. For shifted geometric sequences, calculate the long run value and model loans/ investments	Students will understand that: 1. An arithmetic formula can be written when you know the starting value and have a common difference 2. A geometric formula can be written when you know the starting value and have a common ratio 3. The graphs of arithmetic sequences are linear while the graphs of geometric sequences are curves	 How can you use a recursive formula to determine how much money needs to be paid each month to pay off a given loan in a given amount of time?
Linear Relationships	Students will be able to: 1. Solve, graph, and model Linear Relations 2. Create an equation for a line in slope- intercept, point-slope, standard, and vertex form 3. Describe transformations of lines	 Students will understand that: Linear relationships can be represented with tables, equations, graphs, and scenarios The same linear equation can be written algebraically in many different ways. If a scatterplot of real data looks roughly linear, you can find a line that fine the date and use it to make predictions about the relationship 	 What are some examples and non- examples of linear relationships from real life? Justify your answer. What is the best way to write a linear equation? What advantages are there for each form? What patterns can you identify between the equations and graphs of linear relationships?
Linear Systems	 Students will be able to: Solve linear systems graphically and algebraically Model scenarios using systems and interpret the solution(s) Create and apply a system of multiple linear equations to represent real-world constraints in a scenario 	Students will understand that: 1. Algebraically the solution(s) is the value(s) that make the relations true 2. Systems can be used to compare linear relationships 3. Many real-world constraints on businesses can be modeled mathematically and then used to maximize a businesses' profit.	 Create a scenario that can be solved using systems of linear relations. What method is most efficient for solving systems of equations and why? How can linear optimization be used to help a business determine how much of a product to make?

Integrated College Math

Functions, Relations, and Transformations	Students will be able to: 1. Interpret graphs of functions/relations and evaluate expressions using function notation 2. Graph quadratic, square roots, absolute value, semicircles, under transformations; write equations given the graphs 3. Use functions, (quadratic, square root, absolute value, semicircles,) to model real world phenomena	Students will understand: 1. the different shapes of the graphs of quadratics, absolute values, square root, and semicircle functions 2. All functions behave the same under transformations	 When modeling data, how do we know what parent function to use? How do we fit an equation to data when modeling?
Quadratics	 Students will be able to: 1. Determine the domain, range, complex roots, & vertex of a quadratic function algebraically/graphically 2. Model and interpret scenarios of quadratic relationships 3. Rewrite the equation of a quadratic in standard, vertex, & factored forms 	Students will understand that: 1. The same quadratic equation can be written algebraically in many different ways. 2. Quadratics can be used to model real world scenarios 3. All quadratic functions can be understood through using transformations	 How can you tell if data is linear, quadratic, or something else? What is the most efficient method for solving quadratics and why? Why is it useful to be able to write a quadratic relationship in multiple algebraic ways?
Exponential Functions and Logarithms	 Students will be able to: 1. Model and graph growth/decay using exponential functions to solve real world problems 2. Apply exponent properties to simplify monomial expressions 3. Solve exponential equations for the variable by using logarithms and their properties 4. Determine the domain and range of an exponential function 	Students will understand that: 1. You can expand exponential expressions to derive the properties 2. Real-world interest scenarios such as loans and bank accounts can be modeled with exponentials 3. Logarithms are the inverse of exponential functions	 How can you tell if data is linear, quadratic, or exponential? How do logarithmic and exponential functions impact financial planning? Which method is best for solving for an unknown exponent and why?
Trigonometric Functions	 Students will be able to: 1. Convert between degree and radian angle measurements 2. Extend the definition of trigonometric relationships to any possible angle 3. Use the laws of Sines and Cosines to find missing sides and angles of any type of triangle 	Students will understand that: 1. Radian angle measurement is based upon the idea of an arc length compared to that circle's radius 2. Trigonometry can be extended to all angles, not just angles inside right triangles 3. The values on the unit circle can be found using special right triangles	 How can a unit circle on an x-y plane help us understand how the "rules" allow trigonometry to extend to ALL angles? What is the relationship between the unit circle and the graphs of sine and cosine?

Year at a Glance Scope and Sequence for Math

Overarching Goal of the Curricular Area: Students will be able to use mathematical skills by problem solving, critiquing, analyzing, and reasoning the world around them for a variety of lifelong situations.

Unit **Enduring Understandings Essential Questions Unit Goals** for the Unit for the Unit Theme Properties of Students will be able to: Students will understand: 1. What information does the graph 1. How to analyze and describe the graph of a Functions 1. Analyze graphs of communicate about the equation of a functions and relations. function? function. 2. Describe end 2. The relationship between limits and 2. What information does the equation communicate about the behavior using limit continuity. notation. graph of a function? 3. Perform operations on functions and their inverses. Students will be able to: Polynomial and Students will understand that: 1. How can polynomials help us to **Rational Functions** 1. Graph and identify 1. Basic characteristics of a polynomial or model more complicated real world extrema, end behavior, rational function can be determined from the relationships? domain and range of equation or the graph. 2. How can the individual graphs of polynomials/rationals; 2. Every polynomial has as many roots as its the numerator and denominator of a derive all of the zeroes rational function help you to make degree. 3. The graph of a rational function often of a polynomial/rational sense of the rational function's graph function involves multiple curves that have asymptotes as a whole? 2. Sketch a graph of a 3. Why are the asymptotes important and can be interpreted through polynomial if given in transformations to fully understand a rational factored form and visafunction? versa 3. Solve Rational Equations Students will be able to: Students will understand: 1. Why is log base "e" commonly Exponential Functions and 1. Model and graph real 1. Real-world interest scenarios can be called a "natural" logarithm. Logarithms data using exponential modeled with exponentials and logarithmic 2. How do logarithmic and functions to solve real functions. exponential functions impact financial 2. Logarithms are the inverse of exponential world problems planning? 2. Solve exponential 3. Which method is best for solving for functions 3. The relationship between "e" and the equations for the an unknown exponent and why? variable by using natural logarithm logarithms/natural logarithms and their properties 3. Determine the domain and range of an exponential function

Pre-Calculus

Trigonomotric	Students will be able to:	Students will understand that:	1 What is the relationship between
Functions	1. Graph the relationships between	1. The graphs of trigonometric functions can be transformed	the unit circle and the graphs of sine and cosine?
	angles and an trigonometric ratios and inverses under transformations;	 The laws of Sines and Cosines are derived from creating right triangles within non-right triangles 	 Explain how right triangle trigonometry relates to sound and light waves?
	determine the domain/range 2. Use the laws of sines and cosines to find missing sides and angles of any type of triangle 3. Model using trigonometric ratios		3. How do you come up with an equation to model periodic data?
Trigonometric Identities and Equations	Students will be able to: 1. Simplify trigonometric expressions	Students will understand that: 1. Trigonometric expressions/equations can be manipulated/solved algebraically	 What is the value of having multiple representations of trigonometric functions?
	2. Verify trigonometric identities	 Every trigonometric function can be expressed in multiple ways 	2. How can you use right triangle trigonometry to prove the Law of Sines and Law of Cosines?
	3. Solve trigonometric equations for angles over a given a domain		
Systems of Equations and Matrices	Students will be able to: 1. Solve and model linear systems graphically.	Students will understand that: 1. Linear systems can be represented and solved using a variety of techniques	 What method is most efficient for solving systems of equations and why?
Conic Sections	algebraically, and matrices; be able to interpret the solution(s) 2. Perform matrix operations, calculate inverse matrices by hand and using technology 3. Perform partial fraction decompositions for rational expressions Students will be able to:	2. Matrices are an efficient way of solving complicated real world systems Students will understand:	 Are matrices necessary today? Are matrices necessary today? Can a parabola ever be sideways?
	1. Redefine conic sections based upon a	1. All conic sections can be defines as relationships between foci points and lines.	Is it still then a parabola?
	 Given the graph of a conic, write the 	 Parametric equations can be used to graph the horizontal and vertical position of a projectile 	between the equations of parabolas, circles, ellipses, and hyperbolas?
	equation, and vice versa	 How to algebraically express each conic section in multiple ways 	 How does a parametric equation model a projectile differently from a quadratic equation?
	3. Use parametric equations to model two variables as function of time		

Vectors	Students will be able to:	Students will understand:	How can vectors be used to analyze
	1. Perform operations	1. Vectors represent a direction and distance	and solve real-world problems?
	with vectors, calculate		
	magnitude, and convert	2. Any vector can be expressed in polar and	How do operations on vectors
	between polar to	rectangular form	compare to numerical operations?
	rectangular and vice		
	versa	How vectors apply to real world scenarios	
	Calculate the angle		
	between two vectors		
	Project one vector		
	onto another and its		
	applications		
Polar Coordinates	Students will be able to:	Students will understand:	Is it better to write an equation in
	1. Graph polar	1. Polar coordinates represent an angle of	polar or rectangular form?
	coordinates and	orientation and a distance	W/by are palar equations useful?
	equations	2. Equations are be surgered in value and	why are polar equations userur.
	2. Identify equations	2. Equations can be expressed in polar and	
	given the graph of polar	rectangular form	How is the polar coordinate system
	2 Convert ordered		roctangular coordinate system?
	5. Convert ordered		
	from polar to		
	rectangular and vice		
	versa		
	vc13d		
			1

Year at a Glance Scope and Sequence for Math

Overarching Goal of the Curricular Area: Students will be able to use mathematical skills by problem solving, critiquing, analyzing, and reasoning the world around them for a variety of lifelong situations.

Unit Theme	Unit Goals	Enduring Understandings for the Unit	Essential Questions for the Unit
Expressions, Equations, and Functions	Students will be able to: 1. Mathematically model a real-world scenario with an unknown value 2. Determine whether or not a relation is a function	Students will understand that: 1. Variables can be used to represent an unknown quantity or quantities 2. Functions have independent and dependent variables, where the dependent variable is caused by the independent variable	 How are variables applicable to various life situations? How can equations be used to model real world scenarios?
Linear Relationships	 Students will be able to: 1. Solving Linear Relations 2. Graph Linear Relations 3. Model and interpret using linear relationships 	Students will understand that: 1. The graph of a linear equation is a line 2. You can solve for a variable using multiple methods following the rules of operations 3. Linear relationships can be represented with tables, equations, graphs, and scenarios 4. Relationships with a constant rate of change can be modeled linearly and can be used to make predictions	 What are some examples and non- examples of linear relationships from real life? Justify your answer. Is it necessary to follow algebraic rules when solving equations? Explain why or why not? Are there multiple ways of solving algebraic equations?
Linear Systems	Students will be able to: 1. Solve linear systems graphically 2. Solve linear systems algebraically 3. Model scenarios using systems and interpret solution(s)	Students will understand that: 1. The solution to a system is the point(s) of intersection 2. Algebraically the solution(s) is the value(s) that make the relations true 3. Systems can be used to compare linear relationships	 Create a scenario that can be solved using systems of linear relations. When would each method be the most efficient for solving systems of equations and why?
Quadratics/Radicals	 Students will be able to: Determine the roots and vertex of a quadratic function algebraically/graphically Model scenarios of quadratic relationships to interpret the roots and vertex Perform operations with and solve equations with radicals 	Students will understand that: 1. The graphs of quadratics are parabolas 2. The factored form of a quadratic can be used to find where curve crosses the x-axis 3. Quadratics can be used to model projectile motion 4. A Radical undoes a square	 What are the most important points on a parabola and why? How can you tell if data is linear, quadratic, or something else? When would each method be the most efficient for solving quadratics and why?

Math Concepts

Exponential	Students will be able to:	Students will understand that:	1. What are some examples and non-
Functions and	1. Graph exponentials	1. The shape of an exponential function is	examples of exponential relationships
Properties of	2. Model growth/decay	unique	from real life? Justify your answer.
Exponents	using exponential	Exponentiation is just repeated	How can you tell if data is linear,
	functions	multiplication	quadratic, or exponential?
	Apply exponent	3. You can expand exponential expressions to	
	properties to simplify	derive the properties	
	monomial expressions		
Rational Functions	Students will be able to:	Students will understand that:	 Why is it useful to rewrite an
	1. Add/subtract/	1. Algebraic operations with fractions are the	expression in equivalent forms?
	multiply/divide rational	same as numeric operations with fractions	
	functions	(You need a common denominator when	
	2. Solve Rational	adding/subtracting, but not when	
	Equations	multiplying/dividing)	
		2. Algebraic manipulation is required to	
		simplify and solve rationals	
Polynomials	Students will be able to:	Students will understand that:	1. How does polynomial division
	1. Perform basic	1. Polynomials are relations involving	related to polynomial multiplication
	operations with	variables raised to whole number exponents.	both conceptually and algebraically?
	polynomial functions,		
	including polynomial		2. How can polynomials help us to
	division		model more complicated real world
			relationships?

Year at a Glance Scope and Sequence for Math

Overarching Goal of the Curricular Area: Students will be able to use mathematical skills by problem solving, critiquing, analyzing, and reasoning the world around them for a variety of lifelong situations.

Unit **Enduring Understandings Essential Questions Unit Goal** for the Unit for the Unit Theme Limits & Continuity Students will be able Students will understand: 1. limits can be determined through algebraic 1. Is the limit of a function at a to: 1. find limits of manipulation of the function specified point the same as the value of functions the function at that point? Justify your algebraically, answer. 2. the similarity and differences between the 2. Justify why a function can cross a graphically, and numerically roles of vertical and horizontal asymptotic lines horizontal asymptote, but not a vertical 2. understand, asymptote. describe, and 3. continuity is not required in order to 3. Is a discontinuous relation a compare the determine the limit of a function function? behavior of functions at its asymptotes as well as when the function approaches infinity 3. understand, determine, and describe the continuity of a function. Differentiation Students will be able Students will understand that: 1. differentiation is the instantaneous rate of 1. Explain how the derivative of a to: 1. differentiate any change (slope of the curve at a specific point on function represents the slope of a nonthe graph) of any polynomial function linear curve given function using the rules of differentiation. 2. a function with multiple variables can be 2. differentiate any differentiated implicitly. 2. How does time play a role in rates of multi-variable function with respect 3. the rate of change of a function changes over change? to the independent the course of time variable. 3. use differentiation to find rates of change in relation to time in real life situations.

AP Calculus AB

Applications of	Students will be able	Students will understand:	
Differentiation	to.	1 the corresponding characteristics of graphs	1 What are the relationships between
Differentiation	1 use a graph of	of a function, its derivative, and its second	the 2 nd derivative 1 st derivative and
	1. use a graph of	derivative, and its second	original function?
	dorivativo or its 2nd	derivative.	
	derivative of its 2		
	interpret analyze		
	hupothosize, and		
	describe the graph of		
	the function		
	2 use derivatives in	2 the correlation between the position of an	2 What is the relationship between the
	varied applied	object its velocity at any given time its	nosition of an object its velocity its
	contexts including	acceleration and its sneed	acceleration and its speed?
	velocity speed and	acceleration, and its speed	acceleration, and its speed:
	acceleration		
Integration	Students will be able	Students will understand that:	
integration	to:	1. the inverse of a derivative is an anti-	1. What is the connection between the
	1 graphically	derivative and the process of finding the anti-	derivative and the integral in calculus?
	algebraically, and	derivative is known as integration.	derivative and the megral in calculation
	numerically	derivative is known as integration.	
	determine a Reimann	2 the area under a curve can be found by	2 How can the definite integral he
	Sum	finding the area of a sum of rectangles	interpreted graphically?
	2 use the	infuling the died of a sum of rectangles	interpreted graphically:
	Fundamental	3 the exact area under a curve found by using	3 What are the important properties of
	Theorem of Calculus	an infinite number of rectangles can be	the definite integral and what do those
	to algebraically	calculated using various algebraic	properties mean graphically?
	evaluate the area	manipulations in order to use the Fundamental	properties mean grupmeany.
	under a curve	Theorem of Calculus	
	3 evaluate complex		
	functions through		
	the substitution		
	nrocess		
Logarithmic	Students will be able	Students will understand that:	
Exponential and	to.	1 anti-derivatives of trigonometric logarithmic	1 How do you use the idea of
Other	1 find the anti-	and exponential functions follow directly from	accumulation in applications of the
Transcendental	derivative of	the derivatives of the basic functions	integral?
Functions	trigonometric		integrai.
Tunctions	logarithmic and	2 integrals can be used in a variety of	
	exponential functions	applications to model physical biological and	2 How are exponential and
	2 use integration to	economic situations	trigonometric functions used in the real
	model compound		world?
	interest and		World
	exponential growth		
Slope Fields and	Students will be able	Students will understand that:	
Differential	to:	1. a slope field represents the slope of a	1. Why is interpreting a slope field a
Equations	1. read and interpret	particular function at every point on the	valuable method for solving a
	a slope field to sketch	Cartesian/coordinate plane	differential equation?
	a possible graph of	·····	
	the function	2. in order to solve a differential equation. the 2	
	2. separate the	variables (and their derivatives) must be	2. Can all events in nature be
	variables of a	separated to different sides of the equal sign.	represented by the exponential growth
	function to solve		or decay? Justify your answer.
	simple differential	3. differential equations can be used to model	,
	equations	growth and decay of a multitude of real world	
	3. use exponential	scenarios	
	functions to model		
	growth and decay in		
	real world		
	applications		

Solids of Revolution	Students will be able	Students will understand:	
	to:	1. the area between two curves can be found	1. What real world contexts involve
	1. find the area	by subtracting the area of the smaller curve	finding the area between two curves?
	between two curves	from the smaller curve	
	2. find the volume of		
	a solid revolved	2. volumes of any non-geometric shape can be	
	about either a	calculated using integration	What real world contexts involve
	vertical or horizontal		finding the volume of non-geometric
	line	volumes of geometric shapes with non-	solids?
	3. find the volume of	geometric bases can be found using integration	
	a solid whose cross	of geometric areas	
	sections are made up		
	of known geometric		
	shapes		